Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 26(3): 567-581, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025331

RESUMO

The growing catalogue of structural variants in humans often overlooks inversions as one of the most difficult types of variation to study, even though they affect phenotypic traits in diverse organisms. Here, we have analysed in detail 90 inversions predicted from the comparison of two independently assembled human genomes: the reference genome (NCBI36/HG18) and HuRef. Surprisingly, we found that two thirds of these predictions (62) represent errors either in assembly comparison or in one of the assemblies, including 27 misassembled regions in HG18. Next, we validated 22 of the remaining 28 potential polymorphic inversions using different PCR techniques and characterized their breakpoints and ancestral state. In addition, we determined experimentally the derived allele frequency in Europeans for 17 inversions (DAF = 0.01-0.80), as well as the distribution in 14 worldwide populations for 12 of them based on the 1000 Genomes Project data. Among the validated inversions, nine have inverted repeats (IRs) at their breakpoints, and two show nucleotide variation patterns consistent with a recurrent origin. Conversely, inversions without IRs have a unique origin and almost all of them show deletions or insertions at the breakpoints in the derived allele mediated by microhomology sequences, which highlights the importance of mechanisms like FoSTeS/MMBIR in the generation of complex rearrangements in the human genome. Finally, we found several inversions located within genes and at least one candidate to be positively selected in Africa. Thus, our study emphasizes the importance of careful analysis and validation of large-scale genomic predictions to extract reliable biological conclusions.


Assuntos
Inversão Cromossômica/genética , Genoma Humano/genética , Anotação de Sequência Molecular , Inversão de Sequência/genética , Evolução Molecular , Humanos , Polimorfismo Genético , Seleção Genética/genética , Análise de Sequência de DNA
2.
Genome Res ; 26(1): 60-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518480

RESUMO

Knowledge of the genome-wide rate and spectrum of mutations is necessary to understand the origin of disease and the genetic variation driving all evolutionary processes. Here, we provide a genome-wide analysis of the rate and spectrum of mutations obtained in two Daphnia pulex genotypes via separate mutation-accumulation (MA) experiments. Unlike most MA studies that utilize haploid, homozygous, or self-fertilizing lines, D. pulex can be propagated ameiotically while maintaining a naturally heterozygous, diploid genome, allowing the capture of the full spectrum of genomic changes that arise in a heterozygous state. While base-substitution mutation rates are similar to those in other multicellular eukaryotes (about 4 × 10(-9) per site per generation), we find that the rates of large-scale (>100 kb) de novo copy-number variants (CNVs) are significantly elevated relative to those seen in previous MA studies. The heterozygosity maintained in this experiment allowed for estimates of gene-conversion processes. While most of the conversion tract lengths we report are similar to those generated by meiotic processes, we also find larger tract lengths that are indicative of mitotic processes. Comparison of MA lines to natural isolates reveals that a majority of large-scale CNVs in natural populations are removed by purifying selection. The mutations observed here share similarities with disease-causing, complex, large-scale CNVs, thereby demonstrating that MA studies in D. pulex serve as a system for studying the processes leading to such alterations.


Assuntos
Daphnia/genética , Deleção de Genes , Duplicação Gênica , Taxa de Mutação , Animais , Variações do Número de Cópias de DNA , Evolução Molecular , Feminino , Estudos de Associação Genética , Variação Genética , Heterozigoto , Masculino , Análise de Sequência de DNA
3.
PLoS Genet ; 11(10): e1005495, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26427027

RESUMO

Despite many years of study into inversions, very little is known about their functional consequences, especially in humans. A common hypothesis is that the selective value of inversions stems in part from their effects on nearby genes, although evidence of this in natural populations is almost nonexistent. Here we present a global analysis of a new 415-kb polymorphic inversion that is among the longest ones found in humans and is the first with clear position effects. This inversion is located in chromosome 19 and has been generated by non-homologous end joining between blocks of transposable elements with low identity. PCR genotyping in 541 individuals from eight different human populations allowed the detection of tag SNPs and inversion genotyping in multiple populations worldwide, showing that the inverted allele is mainly found in East Asia with an average frequency of 4.7%. Interestingly, one of the breakpoints disrupts the transcription factor gene ZNF257, causing a significant reduction in the total expression level of this gene in lymphoblastoid cell lines. RNA-Seq analysis of the effects of this expression change in standard homozygotes and inversion heterozygotes revealed distinct expression patterns that were validated by quantitative RT-PCR. Moreover, we have found a new fusion transcript that is generated exclusively from inverted chromosomes around one of the breakpoints. Finally, by the analysis of the associated nucleotide variation, we have estimated that the inversion was generated ~40,000-50,000 years ago and, while a neutral evolution cannot be ruled out, its current frequencies are more consistent with those expected for a deleterious variant, although no significant association with phenotypic traits has been found so far.


Assuntos
Inversão Cromossômica/genética , Cromossomos Humanos Par 19/genética , Evolução Molecular , Fatores de Transcrição/genética , Pontos de Quebra do Cromossomo , Reparo do DNA por Junção de Extremidades/genética , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica , Genética Populacional , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/biossíntese
4.
BMC Bioinformatics ; 15: 163, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24884587

RESUMO

BACKGROUND: Population genetics and association studies usually rely on a set of known variable sites that are then genotyped in subsequent samples, because it is easier to genotype than to discover the variation. This is also true for structural variation detected from sequence data. However, the genotypes at known variable sites can only be inferred with uncertainty from low coverage data. Thus, statistical approaches that infer genotype likelihoods, test hypotheses, and estimate population parameters without requiring accurate genotypes are becoming popular. Unfortunately, the current implementations of these methods are intended to analyse only single nucleotide and short indel variation, and they usually assume that the two alleles in a heterozygous individual are sampled with equal probability. This is generally false for structural variants detected with paired ends or split reads. Therefore, the population genetics of structural variants cannot be studied, unless a painstaking and potentially biased genotyping is performed first. RESULTS: We present svgem, an expectation-maximization implementation to estimate allele and genotype frequencies, calculate genotype posterior probabilities, and test for Hardy-Weinberg equilibrium and for population differences, from the numbers of times the alleles are observed in each individual. Although applicable to single nucleotide variation, it aims at bi-allelic structural variation of any type, observed by either split reads or paired ends, with arbitrarily high allele sampling bias. We test svgem with simulated and real data from the 1000 Genomes Project. CONCLUSIONS: svgem makes it possible to use low-coverage sequencing data to study the population distribution of structural variants without having to know their genotypes. Furthermore, this advance allows the combined analysis of structural and nucleotide variation within the same genotype-free statistical framework, thus preventing biases introduced by genotype imputation.


Assuntos
Algoritmos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alelos , Genética Populacional , Genoma , Genótipo , Humanos , Funções Verossimilhança , Polimorfismo Genético
5.
PLoS One ; 8(4): e61292, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637806

RESUMO

One of the most used techniques to study structural variation at a genome level is paired-end mapping (PEM). PEM has the advantage of being able to detect balanced events, such as inversions and translocations. However, inversions are still quite difficult to predict reliably, especially from high-throughput sequencing data. We simulated realistic PEM experiments with different combinations of read and library fragment lengths, including sequencing errors and meaningful base-qualities, to quantify and track down the origin of false positives and negatives along sequencing, mapping, and downstream analysis. We show that PEM is very appropriate to detect a wide range of inversions, even with low coverage data. However, ≥% of inversions located between segmental duplications are expected to go undetected by the most common sequencing strategies. In general, longer DNA libraries improve the detectability of inversions far better than increments of the coverage depth or the read length. Finally, we review the performance of three algorithms to detect inversions--SVDetect, GRIAL, and VariationHunter--, identify common pitfalls, and reveal important differences in their breakpoint precisions. These results stress the importance of the sequencing strategy for the detection of structural variants, especially inversions, and offer guidelines for the design of future genome sequencing projects.


Assuntos
Algoritmos , Inversão Cromossômica/genética , Mapeamento Cromossômico/métodos , Análise de Sequência de DNA/métodos , Cromossomos Humanos Par 1/genética , Simulação por Computador , Reações Falso-Negativas , Reações Falso-Positivas , Humanos
6.
Science ; 327(5961): 92-4, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20044577

RESUMO

To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 x 10(-9) base substitutions per site per generation, the majority of which are G:C-->A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light-induced mutagenesis.


Assuntos
Arabidopsis/genética , DNA de Plantas/genética , Genoma de Planta , Mutação , Arabidopsis/efeitos da radiação , Citosina/metabolismo , Metilação de DNA , DNA Intergênico , Desaminação , Mutação INDEL , Análise de Sequência de DNA , Deleção de Sequência , Raios Ultravioleta
7.
Mol Biol Evol ; 26(5): 1143-53, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19228922

RESUMO

Photoreactivation, one of the first DNA repair pathways to evolve, is the direct reversal of premutagenic lesions caused by ultraviolet (UV) irradiation, catalyzed by photolyases in a light-dependent, single-enzyme reaction. It has been experimentally shown that photoreactivation prevents UV mutagenesis in a broad range of species. In the absence of photoreactivation, UV-induced photolesions are repaired by the more complex and much less efficient nucleotide excision repair pathway. Despite their obvious beneficial effects, several lineages, including placental mammals, lost photolyase genes during evolution. In this study, we ask why photolyase genes have been lost in those lineages and discuss the significance of these losses in the context of the evolution of the genomic mutation rates. We first perform an extensive phylogenomic analysis of the photolyase/cryptochrome family, to assess what species lack each kind of photolyase gene. Then, we estimate the ratio of nonsynonymous to synonymous substitution rates in several groups of photolyase genes, as a proxy of the strength of purifying natural selection, and we ask whether less evolutionarily constrained photolyase genes are more likely lost. We also review functional data and compare the efficiency of different kinds of photolyases. We find that eukaryotic photolyases are, on average, less evolutionarily constrained than eubacterial ones and that the strength of natural selection is correlated with the affinity of photolyases for their substrates. We propose that the loss of photolyase genes in eukaryotic species may be due to weak natural selection and may result in a deleterious increase of their genomic mutation rates. In contrast, the loss of photolyase genes in prokaryotes may not cause an increase in the mutation rate and be neutral in most cases.


Assuntos
Desoxirribodipirimidina Fotoliase/genética , Evolução Molecular , Flavoproteínas/genética , Genômica , Mutação/genética , Filogenia , Animais , Criptocromos , Cinética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...